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Abstract

We present numerical and experimental results for buoyancy-induced flows in high porosity metal foams heated

from below. A Brinkman–Forchheimer-extended Darcy flow model and a semi-heuristic two-equation energy model

obtained by relaxing the local thermal equilibrium (LTE) assumption are adopted. Experiments conducted under

natural convection conditions for the same configuration are used to test the numerical model and the validity of the

thermal equilibrium assumption for metal foams. Aluminum foam samples of different pore sizes (5–40 PPI) and

porosities (0:896 e6 0:97) are used to illustrate the effects of metal foam geometry on heat transfer. In addition, several

metal foam–fluid combinations (aluminum–air, carbon–air, aluminum–water, and nickel–water) are used to study the

heat transfer enhancement relative to the base case in which there is no metal foam but only a heated plate. Thermal

dispersion effects and the effects of Darcy number on heat transfer are reported. Our results indicate that the thermal

non-equilibrium model provides a superior description of heat transfer in metal foams, especially in the presence of

fluid–porous interfaces. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Flow and transport at the interface between a porous

medium and a clear fluid are of interest in a variety of

engineering applications as well as in the environment.

Solidification processes, thermal insulation, heat pipes,

the interaction of groundwater with surface water and

solute exchange in the hyporheic zone are some such

examples. This paper deals with fluid flow and heat

transfer in metal foams in the presence of fluid–porous

interfaces. High porosity metal foams (e > 0:85) have
gained attention in recent years as potentially excellent

candidates for meeting the high thermal dissipation de-

mands in the electronic industry. The mechanisms that

contribute to the enhanced heat transfer include heat

conduction in the metal foam matrix (whose conduc-

tivity is usually several orders of magnitude higher

compared to the fluid conductivity), and thermal dis-

persion in the fluid at high velocities. The dispersion

conductivity accounts for the effects of pore-level hy-

drodynamics on the macroscopic transport and essen-

tially represents the enhanced mixing due to the presence

of the solid phase.

The well-known Darcy’s law is based on a balance

between the pressure gradient and the viscous forces and

breaks down for high velocities when inertia terms are no

longer negligible. Non-Darcy effects become particularly

important in metal foams as the fluid moves in tortuous

paths and eddies are shed behind the solid fibers in the

interstitial pore volume. The resulting pressure drop

across the medium and the increased mixing (or disper-

sion) accounts for an increase in the net transport. Ear-

lier efforts to quantify the effects of dispersion were

mostly confined to packed beds. More recent studies for

forced convection have shown an increase in heat

transfer with the inclusion of thermal dispersion [1–5].

Jiang et al. [6] found that, if thermal dispersion effects are
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ignored for forced convection in water, then the numer-

ically predicted heat transfer results are lower compared

to the experimental results.

The aim of this paper is to present numerical and

experimental results for buoyancy-induced flow in a

high porosity metal foam heated from below and sur-

rounded by a fluid. Energy transport in porous media is

generally studied by invoking the assumption of local

thermal equilibrium (LTE). Using this approach, a sin-

gle equation describes the temperature in the porous

medium. Consequently, the temperatures of solid and

fluid are assumed equal. The validity of this assumption

for metal foams is doubtful due to the vastly different

thermal conductivities encountered for the metal foam–

fluid combinations. Hence, the effects of local thermal

non-equilibrium (LTNE) are studied by using a two-

equation model for energy. A two-equation model was

used earlier, among others, by Amiri and Vafai [2],

Amiri et al. [3], Jiang et al. [6], Nield and Kuznetsov [7],

and Calmidi and Mahajan [5]. However, a majority of

these investigations reports results for situations in

which there are no fluid–porous medium interfaces. To

the best of our knowledge, no work has been reported

for high-porosity metal foams in which a two-energy

equation approach is used in the presence of interfaces.

In this paper, we fill this knowledge gap and demon-

strate the successful application of such a model in the

presence of two interfaces.

2. Experiments

The metal foam heat sinks were tested under natural

convection conditions in a horizontal configuration.

Photographs of typical metal foam samples are shown in

Figs. 1(a) and (b) and a schematic of the experimental

setup is shown in Fig. 1(c). A large Plexiglas housing of

0.4572 m in height and width and 0.3048 m deep (per-

pendicular to the plane of the paper in Fig. 1(c)) stations

the sample and keeps it isolated from the ambient. Holes

were drilled on the base of the samples to insert Firerod�

cartridge heaters. The base of the sample was insulated

using low conductivity Styrofoam insulation (5.0 cm in

thickness). The area of the insulation block is 16:5 cm�
16:5 cm with the sample placed at the center. The car-

tridge heaters were powered by a DC power supply. The

Nomenclature

asf specific surface area, Eq. (10)

A area of heat sink base, Eq. (1)

Bif ;Bis Biot numbers for the fluid and the solid

matrix, Eq. (23)

C geometric factor

CD dispersion coefficient, Eq. (15)

Da Darcy number

df ; dp fiber diameter and pore size

g gravitational acceleration

hsf interfacial heat transfer coefficient between

solid matrix and fluid

h heat transfer coefficient

kd dispersion conductivity, Eq. (15)

kfe effective thermal conductivity of fluid

kse effective thermal conductivity of the solid

matrix

keff effective thermal conductivity of the porous

medium, Eq. (14)

K permeability of the porous medium

L length of the porous sample

m the exponent in Eq. (13)

Nu Nusselt number, Eq. (25)

p pressure

Pr Prandtl number

Q heat input to the patch heaters

Ra Rayleigh number

Red Reynolds number based on the fiber diameter

Tamb ambient temperature, Eq. (1)

Tbase average temperature of the base, Eq. (1)

Tf ; Ts temperature of fluid and the solid matrix

respectively

u; v horizontal and vertical velocity components

v;~vv velocity vector in the porous medium (di-

mensional and dimensionless)

x; y horizontal and vertical Cartesian coordi-

nates

Greek symbols

a thermal diffusivity

b coefficient of thermal expansion

d Kronecker delta function

e porosity of the porous medium

kf ; ks fluid and solid conductivity ratios

q density

hf ; hs dimensionless temperatures of fluid and so-

lid

l coefficient of dynamic viscosity

Suffixes

eff effective value for the porous medium

f fluid

fe effective value for the fluid

s solid matrix

se effective value for the solid matrix

1 ambient conditions

sf interfacial conditions

p denotes pore level conditions
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base and ambient temperatures were monitored using

0.127 mm T-type thermocouples connected to an Omega

DASTC data acquisition system. Experiments were

conducted on foam samples of different porosities and

pore densities. For each pore density corresponding to 5,

10, 20 and 40 PPI, two samples of different porosities

were chosen. During a typical experimental run, the

power to the heaters was varied to achieve different base

plate temperatures and hence Rayleigh numbers. Due to

temperature properties of the Styrofoam insulation, our

experiments were restricted to maximum base plate

temperatures of 75 �C. The heat transfer coefficient for a
typical experimental run was calculated based on the

following equation:

h ¼ Q
AðTbase � TambÞ

: ð1Þ

3. Analysis

Consider a metal foam sample heated from below

(Fig. 2). The foam sample is saturated with and

surrounded by a fluid, which extends a distance s1 in

thex-direction and s2 in the y-direction. The steady,

Fig. 1. Metal foam samples used in the experiments showing the relative sizes of pores: (a) 5 PPI; (b) 40 PPI; (c) schematic of the

experimental setup.

Fig. 2. Definition sketch.
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two-dimensional equations for the fluid-saturated po-

rous medium and for the clear fluid region outside the

metal foam are written separately as shown below. For

the porous medium the governing equations for the non-

Darcy model were derived following the well-known

volume averaging procedures [8,9]. The energy equa-

tions are written using a semi-heuristic approach and are

based on a local thermal non-equilibrium (LTNE)

model in which the temperature of the solid and the fluid

are solved separately.

Continuity and momentum for porous medium:

r � hvi ¼ 0; ð2Þ
qf

e2
hvi � rhvi ¼ �r ph if þ qfgþ

l
e
r2hvi � l

K
hvi

� C
K1=2

qf jhvijhvi: ð3Þ

Energy equation for the fluid in the porous medium

(LTNE):

hqfi
fcpfhvi � rhTfif ¼ r � ðkfef þ kdÞ � r Tfh ig

þ hsfasf Tsh is
�

� Tfh if
�
: ð4Þ

Energy equation for the solid matrix (LTNE):

0 ¼ r � kse � r Tsh isf g � hsfasf Tsh is
�

� Tfh if
�
: ð5Þ

Continuity and momentum for fluid outside porous me-

dium:

ou
ox

þ ov
oy

¼ 0; ð6Þ

qf u
ou
ox

�
þ v

ou
oy

�
¼ � op

ox
þ o

ox
lf

ou
ox

� �
þ o

oy
lf

ou
oy

� �
;

ð7Þ

qf u
ov
ox

�
þ v

ov
oy

�
¼ � op

oy
þ o

ox
lf

ov
ox

� �
þ o

oy
lf

ov
oy

� �

þ qfgbðT � T1Þ: ð8Þ

Energy equation for the fluid outside porous medium:

qfcpf u
oTf
ox

�
þ v

oTf
oy

�
¼ o

ox
kf
oTf
ox

� �
þ o

oy
kf
oTf
oy

� �
: ð9Þ

To evaluate the influence of the local thermal equilib-

rium assumption for metal foams, we have used both the

equilibrium and non-equilibrium models for tempera-

ture. The energy equations, however, are shown only for

the LTNE model. A single energy equation can be easily

derived for the limit of thermal equilibrium (Tf ¼ Ts), by
adding the two Eqs. (4) and (5). In Eq. (3), the last three

terms are the Brinkman (or friction) term, the Darcy

term and the Forchheimer (or inertia) term. The nota-

tion h/i is used to denote the local volume average of a

quantity while h/ic denotes the intrinsic phase average
of the same quantity for phase c while the subscripts s

and f denote solid and fluid respectively. The effective

conductivities for the porous medium, fluid and the solid

matrix are keff ; kfe and kse respectively. They are func-

tions of the geometry of the medium and the individual

phase conductivities ks and kf respectively. C denotes the

geometric function, hsf is the interfacial heat transfer

coefficient between the solid matrix and the fluid, and

asf is the specific surface area of the foam sample. Since

the geometry of metal foams is considerably complex,

workable approximations have been derived based on

simpler models. For the simplified geometry of an array

of parallel cylinders intersecting in the three mutually

perpendicular directions, asf is given by the following

expression:

asf ¼
3pdf
d2p

: ð10Þ

The above expression needs to be modified for metal

foams to acknowledge the fact that the fibers are non-

circular in cross-section. Following Calmidi and Ma-

hajan [5]:

asf ¼
3pdf

0:59dp
� �2 1

�
� exp

�
� 1� e

0:04

� ���
: ð11Þ

Pore size dp refers to the size of the pores which are in

the shape of a dodecahedron and is usually expressed in

units of pores per inch (PPI). The fibers of the metal

foam form the edges of a dodecahedron with about 12–

14 sides and the cross- section of the fiber is circular only

for low porosity values. The porosity e, the pore size dp
and the fiber diameter df are related.

The interfacial heat transfer coefficient for packed

beds is usually calculated using a correlation due to

Wakao et al. [10]. No such general correlation exists for

foamed materials. However, noting that the radial

temperature gradients are expected to be small for metal

foams, it is reasonable to use an appropriate Nusselt

number correlation for flow over an external body to

calculate hsf . For the present problem the natural con-

vection velocity jhvij can be used to calculate a Reynolds
number based on the fiber diameter ð¼ jhvij � df=m � eÞ.
The interfacial heat transfer coefficient, hsf , can then be

calculated using a forced convection correlation. For all

cases considered in the present work, the fiber Reynolds

numbers (Red) are less than 20,000 although in most

cases the Reynolds number is less than 1000. For this

range the following correlation proposed by Zhukaus-

kas [11] can be used to estimate hsf :

Nud ¼
hsf � dp
kf

¼
0:75Re0:40d Pr0:37; 16Red 6 40;

0:51Re0:51d Pr0:37; 406Red 6 1000;

0:26Re0:60d Pr0:37; 10006Red 6 2� 105:

8><
>:

ð12Þ
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The above correlation is strictly valid for circular

cylinders. For metal foams, as pointed out above, the

cross-section of the fibers is circular only for low po-

rosity values. As the porosity increases (>0.9), the fiber
cross-section changes from being circular to almost tri-

angular. Since interest in the present work is confined to

high porosity values, need for a correlation that takes

this fact into account is indicated. However, a closer

examination of the heat transfer correlations for exter-

nal flow over bodies of different cross-sections [12]

shows that an equation of the form

Nud ¼ CT � Remd Pr0:37 ð13Þ

can be used for non-circular cross-sections and that the

exponent m varies much more slowly compared to the

constant CT . The exponent m was found to lie between

0.5 and 0.78 depending on the cross-section and the

Reynolds number. For the fiber Reynolds numbers en-

countered in the present work, we have decided to study

the effect of the fiber cross-section on the heat transfer

by replacing Eq. (12) with Eq. (13) and by using different

values for CT while using a constant value of m ¼ 0:50
for the exponent. The results of this study are presented

in a later section.

The effective conductivities of the solid and the fluid

phases (kse and kfe) have been estimated using the rela-

tions proposed by Calmidi and Mahajan [13]. For keff ,
we have used the following correlation proposed by

Bhattacharya et al. [14]

keff ¼ M ekf½ þ ð1� eÞks� þ ð1�MÞ e
kf

��
þ 1� e

ks

��
:

ð14Þ

The correlation is based on considerations of series and

parallel resistances to heat transfer at the interface and

the coefficient M was found to be 0.35 based on exper-

imental data.

In our work, dispersion is treated as an additional

contribution to the stagnant diffusive component as

shown in Eq. (4) [1,2]. In an earlier analysis, Koch and

Brady [15] used ensemble averaging and defined the

dispersion as the product of the velocity, fiber thickness

and a constant dependent on the porosity. Using this

approach, the dispersion coefficient can be written as

kd ¼ qcpCD

ffiffiffiffi
K

p
� jvj: ð15Þ

Since the metal foam matrix is isotropic, we assume that

the x and y components of dispersion are equal (i.e.,

kdx ¼ kdy ¼ kd). The coefficient of thermal dispersion CD

requires determination and is described later.

The boundary conditions for the above set of equa-

tions are shown in Fig. 2. Due to the symmetry in the

problem, it is sufficient to solve only one half of the

domain. We consider the right half of the domain and

consequently, the left edge AG becomes a line of sym-

metry. No-slip conditions are imposed on the bottom

surface (AE) as well as on the sides EF and FG to ap-

proximate the conditions in our experiments. The two

sets of equations for the fluid and porous regions are

coupled at the two interfaces (BC and CD) by the fol-

lowing matching conditions (shown only for the inter-

face BC):

T ¼ eTf þ ð1� eÞTs; ð16aÞ

� kfe
oTf
ox

����
x¼L�

¼ � kf
oTf
ox

����
x¼Lþ

;

� kse
oTs
ox

����
x¼L�

¼ � kf
oTf
ox

����
x¼Lþ

;

ð16bÞ

ujx¼L� ¼ ujx¼Lþ ; ð16cÞ

vjx¼L� ¼ vjx¼Lþ ; ð16dÞ

pjx¼L� ¼ pjx¼Lþ ; ð16eÞ

leff

ou
ox

����
x¼L�

¼ l
ou
ox

����
x¼Lþ

; ð16fÞ

leff

ov
ox

�
þ ou

oy

�����
x¼L�

¼ l
ov
ox

�
þ ou

oy

�����
x¼Lþ

: ð16gÞ

A similar set of equations has been used for the interface

CD. Conditions (16a) through (16e) express the conti-

nuity of temperature, heat flux, normal and tangential

velocities and the pressure respectively while conditions

(16f) and (16g) match the deviative normal and shear

stresses at the interface. Eq. (16g) represents an exten-

sion of the shear stress matching condition due to Neale

and Nader [16]. In the above equations, leff is an effec-

tive viscosity of the porous medium and is associated

with the Brinkman term in the momentum equation.

Determination of leff remains an open problem [17].

Results obtained by assuming leff ¼ l were found to be

in good agreement with experimental studies [18].

Matching the temperature and heat flux at the in-

terfaces is a non-trivial task when the solid and fluid

phase equations are solved separately. Very little work

exists in the literature in which heat flux is matched at a

fluid–porous interface while using the two-equation

model for energy (e.g., [19]). In one scenario, we may

assume that the flux from the fluid is in separate balance

with the fluid and the solid phase fluxes on the porous

side as shown in Eq. (16b). An alternative approach,

used in this work, is to use keff , defined in Eq. (14). Then,
the matching conditions at the interface appear as

shown below (only the conditions for the x direction are

shown; those in the y direction are similar):

� keff
oTf
ox

����
x¼L�

¼ � kf
oTf
ox

����
x¼Lþ

;

� keff
oTs
ox

����
x¼L�

¼ � kf
oTf
ox

����
x¼Lþ

:

ð17Þ
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This approach is found to provide slightly superior re-

sults compared to the conditions shown in Eq. (16b). Eq.

(17) can be satisfied by specifying the appropriate dif-

fusion coefficients for the energy equations at the inter-

faces.

4. Dimensionless equations

The governing equations for the fluid and porous

regions were solved using a unified one-domain ap-

proach. The advantages of such a formulation are that it

automatically ensures the satisfaction of the interfacial

conditions and does not involve complicated inner iter-

ation loops for values at the interface [18]. Conse-

quently, the two sets of equations for the fluid and the

porous regions are combined into one set by using the

following binary flag:

dðx; yÞ ¼ 1 for metal foam ð0 < e < 1Þ;
0 for clear fluid ðe ¼ 1Þ:


ð18Þ

We drop the h/i notation for convenience and make the
above equations dimensionless using the following

scales: H for length, ðTh � T1Þ for temperature, ðaf=HÞ
for velocity, ðH 2=afÞ for time and H 2=qfa

2
f for pressure.

The resulting dimensionless equations are shown below.

Combined momentum equations:

1

e2
u
ou
ox

�
þ v

ou
oy

�
¼ � op

ox
� Pr
Da

ud � Cffiffiffiffiffiffi
Da

p j~vvjud

þ e�1 Prr2u; ð19Þ

1

e2
u
ov
ox

�
þ v

ov
oy

�
¼ � op

oy
� Pr
Da

vd � Cffiffiffiffiffiffi
Da

p j~vvjvd

þ e�1 Prr2vþ RaPrh: ð20Þ

Combined energy equations for the fluid and solid matrix:

u
ohf
ox

�
þ v

ohf
oy

�
¼ Bif � kf � dffiffiffiffiffiffi

Da
p hsð � hfÞ

þ o

ox
d kf
�n�

þCD

ffiffiffiffiffiffi
Da

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p �

þ ð1� dÞ
oohf
ox

�

þ o

oy
d kf
�n�

þCD

ffiffiffiffiffiffi
Da

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p �

þ ð1� dÞ
oohf
oy

�
; ð21Þ

ð1� dÞ u
ohf
ox

�
þ v

ohf
oy

�
¼ dksr2hs þ ð1� dÞr2hf

� Bis � ksdðhs � hfÞ: ð22Þ

The dimensionless quantities appearing in the above

equations are defined as shown below:

Da ¼ K
H 2

; Bis ¼
hsfasfH 2

kse
; Bif ¼

hsfasfH
ffiffiffiffi
K

p

kfe
;

Ra ¼ gbH 3ðTh � T1Þ
tfaf

; Pr ¼ tf
af
; kf ¼

kfe
kf

;

ks ¼
kse
kf

: ð23Þ

In the combined energy equations (21) and (22), hf is
used to denote the temperature of the fluid both inside

and outside the porous medium depending on the spatial

location while the diffusion coefficients at the interface

are specified to satisfy Eq. (16b). The dimensionless

boundary conditions are shown in Fig. 2. The interface

matching conditions are not shown in dimensionless

form as they can be easily derived from (16a)–(16g). Heat

transfer from the heated wall occurs both through the

solid phase and the liquid phase. The total heat transfer

can be written as

q ¼ hLDT ; ð24Þ

Nu ¼ hL
kf

¼
Z L=H

0

kse
kf

ohs
oy

�
þ kfe
kf

ohf
oy

�
dx

¼ Nus þ Nuf : ð25Þ

Although the Nusselt number could be defined based on

the effective thermal conductivity of the porous medium,

such a definition would not facilitate an easy compari-

son of enhancement as the effective conductivity changes

with changes in the porosity, and the individual phase

conductivities. We therefore have chosen to define the

Nusselt number based on the thermal conductivity of

the fluid to evaluate enhancement with respect to the

base case in which there is no metal foam but only a

heated plate placed in ambient fluid. When there is no

metal foam, the Nusselt number can be defined as

Nu0 ¼
h0L
kf

¼
Z L=H

0

ohf
oy

dx: ð26Þ

The enhancement in heat transfer can then be defined as

E ¼
Nu� Nu0
� �

Nu0
: ð27Þ

5. Numerical method

The system of equations and boundary conditions

have been solved using control volume based, semi-

implicit methods [20]. The control volume formulation

ensures conservation of momentum and energy as well

as the continuity of fluxes. The harmonic mean formu-

lation of Patankar [20] was used to describe the diffusion

coefficients at the porous–fluid interfaces. This formu-

lation can handle abrupt changes in the properties (such

as permeability) across the interface without requiring
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an excessively fine grid. A staggered, non-uniform grid

was used and the velocity–pressure coupling was han-

dled using the SIMPLER algorithm. The non-uniform

grids enabled the placement of fine steps at the porous–

fluid interface and at the boundaries. All computations

reported in this paper were carried out using a 251ðX Þ�
291ðY Þ non-uniform grid after carrying out a careful

grid dependence study. The variable geometric grid al-

lowed the placement of fine steps (typically of the order

of 10�5) near the heated surface. For this level of grid

refinement, the uncertainty in the average Nusselt

number reported is less than 3%. The size of the com-

putational domain was varied until the Nusselt number

did not change by more than 1% with a further increase

in the domain size. A dimensionless value of 10.0 ðs1 ¼
s2 ¼ 10Þ satisfied this criterion and was used for the

computations. The stopping criterion for the computa-

tions was based on the requirement that the relative

error in the variables between two successive iterations

must be less than 10�6.

6. Results and discussion

To validate our numerical model, we compared

model results with the work of Beckermann et al. [18] for

natural convection in a rectangular enclosure in which

there is a fluid–porous interface. Although they did not

use a two-equation model for temperature, this com-

parison was carried out to check the correctness of the

interface conditions and our implementation using the

one-domain approach. We obtained an excellent agree-

ment for the average Nusselt numbers and the temper-

ature profiles [21].

We considered four representative combinations of

high porosity foam material and fluid in the present

work: nickel in water, aluminum in water, aluminum in

air, and Reticulated Vitreous Carbon (RVC) in air. The

experiments were carried out using aluminum foams in

air. Properties of these metal foams are summarized in

Table 1. All computations reported in this paper used

the dimensions of the metal foam sample from the ex-

periments )6.35 cm (Length)� 5.08 cm (Height). In di-

mensionless coordinates, these lengths translate to 1.25

(Length) and 1.0 (Height) respectively. Since we assume

symmetry in the x-direction, all computed results show a

metal foam sample with dimensions 0.625 (Length)� 1.0

(Height).

Before discussing the numerical simulations, we first

present data from the experimental runs in Fig. 3. An

important finding is that the heat transfer rate for a gi-

ven Rayleigh number decreases as the pore density in-

creases from 5 to 40 PPI. This is due to the fact that

resistance to flow decreases with an increase in pore size

(or a decrease in pore density) resulting in enhanced

mixing and heat transfer. Similarly, we notice from Fig. 3 T
a
b
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that for a given PPI, the heat transfer increases with a

decrease in porosity. As porosity decreases, there is more

metal content per unit volume and conduction heat

transfer in the metal fibers contributes to a net increase

in the heat transfer.

The results of model predictions for the 5 PPI metal

foam are shown in Figs. 4 and 5. Fig. 4 shows the

variation of the local Nusselt number along the heated

foam sample. First we notice that there is an order of

magnitude difference between the solid and fluid phase

Nusselt numbers, which requires the use of a log scale to

show a meaningful comparison. The solid phase heat

transfer is clearly the dominant mode of heat transport

and the fluid phase makes an incremental contribution

to the total heat transfer. We also notice that the max-

imum in the local Nusselt number occurs at the edge of

the metal foam sample (x ¼ 0:625). The reason for this

behavior becomes clear from Fig. 5(a), which shows, for

the 5 PPI foam sample, the plots of stream functions and

isotherms. There is convergence of flow near the bottom

corner of the metal foam (the point B in Fig. 2) where

fluid is entrained due to buoyancy. Consequently, the

velocity is highest at this point resulting in high local

Nusselt numbers. The isotherm plots shown in Fig. 5

show large gradients in temperature at the interface BC.

This is a reflection of higher thermal conductivity for

aluminum compared to that of air. The gradients at the

interface CD are not as predominantly high, primarily

because the entrainment is strongest along the interface

BC and partly because the fluid is decelerated once it

enters the porous foam. The heated fluid eventually

leaves from the top. Although not shown in Fig. 4, the

temperature gradients in the solid and the fluid are of a

comparable magnitude. A much higher value of Nus in
Fig. 4 is therefore due to the high value of ðkse=kfÞ in
Eq. (25).

The computed dimensionless temperature profiles

across the interface are shown in Fig. 5(b) for the con-

ditions of the experiment for two different Rayleigh

numbers. We notice that, across the interface, the tem-

perature falls steeply from its high value inside the porous

medium. The effect of increasing the Rayleigh number is

to decrease the temperature in the porous medium due to

higher mixing and enhanced heat transfer.

To understand the effect of the empirical constant CT

introduced into the interfacial heat transfer description

in Eq. (13) earlier, we carried out numerical simulations

for different values of CT . The results are shown in Fig.

6. As CT increases, the Nusselt number increases because

the efficiency of interfacial heat exchange improves. This

trend continues till the solid and fluid phase tempera-

tures satisfy local thermal equilibrium at which point the

Nusselt number ceases to increase with a further increase

in CT . This occurs at a value of CT ¼ 0:52. We have used

this value for all subsequent computations.

6.1. Comparisons with experimental heat transfer data

Using the value of CT obtained from the above study

we have carried out detailed comparisons between our

model predictions and the experimental data for heat

transfer. These comparisons are summarized in Fig. 7

for the 5, 10 and 40 PPI samples. The local thermal

non-equilibrium (LTNE) model produced an excellent

agreement with the experimental data for all the metal

foam samples and Rayleigh numbers considered. How-

ever, the model based on the LTE assumption signifi-

cantly underpredicts heat transfer. This difference is

about 25% for the 5 PPI sample (Fig. 7). For other

samples, we noted larger deviations (not shown in the

figure).

Our model for flow is based on the Brinkman–

Forchheimer Flow (BFF) model in which we made the

assumption that le ¼ lf . Although Givler and Altobelli

[17] noted that it is not appropriate to use this as-

sumption for 10 PPI open-cell reticulated foam samples,

we found a uniformly good agreement with measured

heat transfer data for all the samples – from 5 to 40 PPI.

Recently Alazmi and Vafai [22] analyzed the interfacial

conditions at a porous–fluid interface and using a single-

energy equation for the temperature showed that rela-

tions for the effective viscosity such as le ¼ 7:5lf had
Fig. 4. Local Nusselt number distribution along the heated wall

for the 5 PPI metal foam, sample 1.

Fig. 3. Summary of experimental heat transfer data.
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little effect on the predicted temperature and Nusselt

numbers. Our experience, based on the limited sets of

metal foam samples and fluids considered in this work,

indicates that descriptions of the interfacial heat transfer

phenomena while using a two-equation energy model

are more important than issues related to the uncer-

tainty in the effective viscosity of the BFF model. The

maximum difference between the predictions of the

LTNE model and the experimental data is less than 15%

for all the cases reported in this paper. Factors that

contributed to this difference could potentially include

differences in the flow structure between the model (two-

dimensional) and the experiment (three-dimensional)

in the vicinity of the metal foam and uncertainty in

the effective viscosity of the BFF model. The deviation

Fig. 7. Comparison of model predictions with experimental data.

Fig. 5. (a) Streamfunction and isotherm plots for 5PPI metal foam, sample 1, Ra ¼ 97582; (b) fluid temperature profiles for different

Ra along the transect A–A at y ¼ 0:5.

Fig. 6. Effect of the parameter CT on heat transfer results for 5

PPI metal foam.
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between the model and data is highest for the lowest

Rayleigh numbers, which is likely related to a higher

uncertainty in the measurements for low Rayleigh

numbers.

While comparing the model predictions with experi-

mental data we have evaluated the effects of thermal

dispersion for the various metal foam–fluid combina-

tions. We found the effects of dispersion to be negligibly

small. In particular, for the aluminum metal foams in

air, we were not able to assign a meaningful value for the

dispersion coefficient CD as the changes in the mean

Nusselt number due to dispersion are significantly lower

compared to the uncertainty in our numerical model.

Consequently, we have decided to use a value of CD ¼
0:06 used by Calmidi and Mahajan [5] for similar foam–

fluid combinations. For thermal dispersion to become

significant, the contribution due to dispersion should be

comparable to the effective stagnant conductivity, keff .
Eq. (15) can be rewritten in a dimensionless form as

kd
keff

¼ CD

ffiffiffiffiffiffi
Da

p

keff
~vv
��� ���: ð28Þ

For the aluminum metal foam sample in air, typical

values of Da and j~vvj (for a Rayleigh number of 411538)

are 7:7� 10�5 and 30 respectively. For CD values of 0.1

and 0.3, and keff ¼ 281:5, the dispersion accounts for

0.009% and 0.027% of the total stagnant conductivity

respectively. Consequently, we expect the effects of

thermal dispersion to be negligible for this case. This

was indeed borne out by our numerical solutions.

However, if we increase the Darcy number (for example,

by increasing the height H of the porous block), then the

effects of dispersion become important. For example, for

a Darcy number of 0.01, thermal dispersion could ac-

count for a 10% increase in heat transfer for CD ¼ 0:3.
Still higher increases in heat transfer have been obtained

for higher Ra. Similarly, we found that effects of thermal
dispersion become more pronounced when the saturat-

ing fluid is water rather than air.

6.2. Effect of Darcy number

We studied the effect of Darcy number to illustrate

the influence of changing the permeability of the porous

medium. Fig. 8 shows the streamfunction and isotherm

plots for two different values of Darcy number (Da ¼
10�8 and 7:7� 10�5). The general conclusion based on

these plots is that increasing Da (permeability) helps the
flow to penetrate deeper into the porous layer. For ex-

ample, the low Darcy number results in Fig. 8(a) show

that, although the Rayleigh number is relatively high,

the flow is unable to penetrate deeper into the porous

block due to the high resistance. Consequently, fluid is

mostly confined to the region outside the porous sample.

Fig. 8. Effect of Darcy number on flow and temperature fields for Ra ¼ 411537 (5 PPI, Sample 1): (a) Da ¼ 10�8; (b) Da ¼ 10�3.
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As Darcy number increases, the flow penetrates deeper

into the porous medium as seen from the velocity and

temperature fields (Fig. 8(b)). The isotherms show the

presence of relatively stronger gradients at the interface.

These descriptions are consistent with the fact that

for high values of Da, the Darcy term becomes small

while the Brinkman term in the momentum equation

becomes small for low values of Da. The influence of

Darcy number on the Nusselt number is shown in Fig. 9.

The temperature inside the porous foam is much higher

for the lower Darcy number due to the lack of mixing

as fluid is not able to penetrate inside the block. The

Nusselt number increases with Darcy number as noted

above while it approaches a constant value for very low

values of Da. The low Da heat transfer asymptote

represents the physical limit of an almost impervious

porous block.

6.3. Enhancement in heat transfer

To understand the heat transfer enhancement char-

acteristics of different metal foams and fluids, we carried

out a parametric study in which we fixed the geometry

related properties (such as fiber diameter and pore size)

of the metal foam and changed only the properties of the

individual phases. We consider the 5 PPI metal foam

sample no. 1 shown in Table 1 to illustrate the effect

of using various metal foam–fluid combinations. The

properties of the fluids and metals are summarized in

Table 2. We notice from Table 2 and from Eq. (14) that

the effective conductivities of the carbon metal foam are

much smaller compared to those for aluminum foam.

As a result, the conduction heat transfer which is the

dominant mode of transport, will not be as effective for

carbon metal foams. The isotherm plot for the carbon–

air combination (figure not shown) is marked by the

absence of steep temperature gradients at the interface

unlike the isotherms shown in Fig. 5 for aluminum–air.

To quantify the heat transfer enhancement, we

compared the Nusselt numbers to a base case in which

there is no metal foam but only a heated plate placed in

ambient fluid. Nu for this case is calculated using the

following correlation proposed by Lloyd and Moran

[23] for a heated surface facing upward:

Nu0 ¼
h0L
kf

¼ 0:54Ra0:25L� ; ð29Þ

where L� is a characteristic length of the plane surface.

Our results show that although the Nusselt number

values are lower for water (due to its high thermal

conductivity which appears in the denominator in the

definition of Nu in Eq. (25)), the enhancement values are
higher due to its higher heat capacity. In a limited range

of Rayleigh numbers used to carry out this parametric

study (105 6Ra6 5� 105), heat transfer enhancement is

almost independent of the Rayleigh number. The alu-

minum foams in water produce the highest enhancement

(E � 16Þ followed by nickel–water (E � 9:5), and then

by aluminum–air (E � 3:8). Carbon metal foams in air

do not produce an enhancement.

Heat transfer enhancement in metal foams is the

result of a balance between convection in the fluid

and conduction in the metal foam matrix. For a given

Rayleigh number, the conduction heat transfer due to

the presence of a metal foam will have to exceed that due

to convection alone (in the absence of metal foam) to

obtain an enhancement. This is possible only when the

metal foam has a relatively high thermal conductivity

compared to that of the fluid. We can postulate the

existence of a critical conductivity ratio (as a function of

the Rayleigh number) below which no enhancement can

be obtained. An example of such a situation is illustrated

by RVC-air samples for which the enhancements were

found to be less than zero indicating that the metal

foam actually contributed to a reduction in heat trans-

fer. This wide range of values for the enhancement

can be understood by examining the solid to fluid ther-

mal conductivity ratios (ks) for these cases. Carbon has

the lowest conductivity among all the metals consid-

ered in this study. Our results indicate that when solid

conductivity falls below a certain value, use of metal
Fig. 9. Effect of Darcy number on heat transfer: 5 PPI,

sample 1.

Table 2

Properties of fluids/metals used

Fluid/metal

foam

Thermal

conductivity

ðW=m2 KÞ

Kinematic

viscosity

ðm2=sÞ
Water 0.615 8.00E) 07
Air 0.026 1.59E) 05
Aluminum 218 –

Nickel 90 –

RVC (carbon) 8.5 –
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foams could potentially contribute to a reduction in

heat transfer. This can be attributed to the inhibition of

flow due to natural convection in the presence of the

metal foam matrix (which increases flow resistance).

High solid to fluid conductivity ratios are required to

overcome this resistance and produce heat transfer en-

hancement.

6.4. Effects of local thermal non-equilibrium

We examined the effects of local thermal non-equi-

librium by comparing the fluid and solid temperatures at

every point in the porous medium. The departure of the

solid temperature from its fluid counterpart is taken as a

measure of the local thermal non-equilibrium as defined

below [2]:

%LTNE ¼ jhs � hf j � 100: ð30Þ

Fig. 10 shows the variation of %LTNE as a function of

space for aluminum–air, sample 1. The flow and tem-

perature fields are shown in Fig. 5(a). We notice that the

location where the %LTNE is highest is at the point

where the velocities are highest. A velocity profile

showing the variation of the horizontal velocity ðuÞ
along the y- direction (not shown) confirmed that a

maximum in the absolute value of velocity indeed occurs

near the bottom of the block (point B in Fig. 2). As a

result and as expected, we conclude that the LTE as-

sumption becomes invalid in regions where velocities are

high.

We found that the LTE assumption is better justified

when water is used in place of air. This is due to the

much higher conductivity and heat capacity of water

which results in a more uniform temperature distribu-

tion between the phases. For the same conditions shown

in Fig. 10, the aluminum–water combination produced

a maximum LTNE of 7.4% compared to a value of 16%

for aluminum–air. Examination of a large number of

cases showed that the %LTNE increases with the Ray-

leigh number as well as the Darcy number. When Darcy

number increases, flow experiences less resistance to

cross over to the porous side. This results in higher

fiber Reynolds numbers and larger differences in solid

and fluid temperatures. Clearly, an approach based on a

single energy equation introduces significant errors in

such a situation. In some cases LTNE departures as high

as 60% were obtained resulting in potentially significant

errors if a single energy equation is employed. Based on

this study, we conclude that, for metal foams in general,

the two-equation temperature model should be used in

place of the traditional one-equation models. Some of

the above conclusions may not apply to situations in

which there are no fluid–porous interfaces.

7. Conclusions

In this paper, we have examined the flow and heat

transfer characteristics of metal foam samples heated

from below. By using a two-equation model for the

temperature and by integrating the porous medium and

the clear fluid domains using the single-domain ap-

proach, we were able to successfully predict heat transfer

in aluminum metal foams for a wide range of Rayleigh

numbers and pore sizes. The predictions based on the

non-equilibrium model for temperature are in better

agreement with our experimental data compared to

those based on the LTE model. Significant enhance-

ments in heat transfer result from the use of metal foams

(up to a factor of 4 for Al–air and about 16 for Al–

water). Although dispersion did not play a role for the

conditions described in this paper, we showed that sig-

nificant errors could potentially result if dispersion is

neglected at high Darcy numbers. Local thermal non-

equilibrium effects were found to be significant at high

Rayleigh and Darcy numbers and significant errors are

introduced if a single-equation approach is adopted.

Consequently, we conclude that the two-equation energy

model is a better model when fluid porous interfaces are

involved and for the metal foam fluid combinations

considered in the present work.
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